Structure of a Hexanuclear Ruthenium Cluster: $\mathbf{R u}_{6} \mathbf{C}(\mathbf{C O})_{15}\left(\mathbf{P h}_{2} \mathbf{P C H}_{\mathbf{2}} \mathbf{P P h}_{2}\right)^{*}$

By B. P. Gracey, J. Evans, \dagger A. G. Jones and M. Webster
Department of Chemistry, The University, Southampton SO 9 5NH, England

(Received 11 May 1987; accepted 7 August 1987)

Abstract. $\quad\left[\mathrm{Ru}_{6} \mathrm{C}\left(\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{P}_{2}\right)(\mathrm{CO})_{15}\right], \quad M_{r}=1423 \cdot 1$,
monoclinic, $\quad C 2 / c, a=14.116(4), \quad b=18 \cdot 132(4), \quad c$ $=35.665$ (4) $\AA, \quad \beta=101.04$ (2) ${ }^{\circ}, \quad V=8959.6 \AA^{3}, Z$ $=8, D_{m}=2 \cdot 10(2), D_{x}=2 \cdot 109 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda(\mathrm{Mo} K \alpha)=$ $0.7107 \mathrm{~A}, \quad \mu=20.4 \mathrm{~cm}^{-1}, \quad F(000)=5456$, room temperature, final $R=0.052$ for 5234 reflections $[F>6 \sigma(F)]$. The asymmetric unit consists of one $\left[\mathrm{Ru}_{6} \mathrm{C}(\mathrm{CO})_{15}\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{PPh}_{2}\right)\right]$ cluster in which the central C atom is coordinated to the six Ru atoms (mean $\mathrm{Ru}-\mathrm{C}$ distance $2.055 \AA$) which form an octahedral cage. One CO group is edge bridging, the remainder being terminal. The bis(phosphine) ligand bridges an $\mathrm{Ru}-\mathrm{Ru}$ edge, thus forming a five-membered $\mathrm{Ru}-\mathrm{Ru}-\mathrm{P}-\mathrm{C}-\mathrm{P}$ ring. One of the P atoms is coordinated to an Ru atom which is trans to a metal atom involved in the CO bridge with the second P atom bound to an Ru atom cis to both CO-bridged metal centres.

Introduction. $\left[\mathrm{Ru}_{6} \mathrm{C}(\mathrm{CO})_{17}\right]$ reacts with bidentate phosphines ($\mathrm{P}-\mathrm{P}$) under ambient conditions to give clusters of general formula $\left[\mathrm{Ru}_{6} \mathrm{C}(\mathrm{CO})_{15}(\mathrm{P}-\mathrm{P})\right.$] in high yield. Two possible coordination modes for the phosphine are either chelating to one Ru centre or as a bidentate bridging ligand. Low-temperature ${ }^{31} \mathrm{P}$ NMR experiments on one such derivative, $\left[\mathrm{Ru}_{6} \mathrm{C}(\mathrm{CO})_{15}\right.$ $\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{PPh}_{2}\right)$, demonstrated that the P atoms are in non-equivalent positions in solution at 172 K), but at the lowest temperature attainable (158 K) the ${ }^{13} \mathrm{CO}$ groups undergo a selective site exchange which precludes establishing the structure of the complex.

Experimental. Air-stable black crystals were obtained from cyclohexane/methylene chloride and density measured by flotation ($\mathrm{CCl}_{4} / \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Br}_{2}$). Preliminary data were from photographic X -ray examination and accurate cell dimensions obtained from 25 reflections ($9.4<\theta<13.9^{\circ}$) using an Enraf-Nonius CAD-4 diffractometer fitted with graphite monochromator and Mo radiation. The intensities of 8829 reflections were recorded ($\omega-2 \theta$ scan, $1.5<\theta<25^{\circ}, h 0 \rightarrow 16, k 0 \rightarrow 21$, $l-12 \rightarrow 42$) using a crystal $0.3 \times 0.2 \times 0.15 \mathrm{~mm}$. The standard reflections (3) showed no decay with time and

[^0]Table 1. Atomic coordinates and isotropic temperature factors $\left(\AA^{2} \times 10^{3}\right)$

	x	y	2	U
$\mathrm{Ru}(1)$	0.32246 (6)	0.50806 (5)	$0 \cdot 10917$ (3)	27-5 (5)*
$\mathrm{Ru}(2)$	$0 \cdot 17424$ (6)	0.40948 (5)	0.13232 (3)	$27 \cdot 2$ (5)*
Ru(3)	0.37966 (7)	0.37158 (5)	0.15412 (3)	33.0 (5)*
$\mathrm{Ru}(4)$	$0 \cdot 39852$ (6)	$0 \cdot 38205$ (5)	0.07596 (3)	31.0 (5)*
Ru(5)	0.19569 (6)	0.41954 (5)	0.05322 (3)	30.6 (5)*
$\mathrm{Ru}(6)$	0.25496 (7)	$0 \cdot 28645$ (5)	0.09865 (3)	34.6 (5)*
$\mathrm{P}(1)$	0.2383 (2)	0.6170 (2)	$0 \cdot 1165$ (1)	30 (2)*
$\mathrm{P}(2)$	$0 \cdot 1118$ (2)	0.5165 (2)	0.1543 (1)	29 (2)*
C(1)	0.4211 (10)	0.5226 (7)	0.1519 (4)	45 (3)
$\mathrm{O}(1)$	0.4846 (8)	0.5403 (6)	0.1759 (3)	73 (3)
C(2)	0.3802 (10)	0.5596 (8)	0.0745 (4)	54 (4)
O(2)	0.4182 (9)	0.5921 (6)	0.0536 (4)	81 (3)
C(3)	0.1757 (9)	0.3680 (7)	0.1794 (4)	42 (3)
O(3)	0.1683 (8)	0.3403 (6)	0.2084 (3)	67 (3)
C(4)	0.0503 (9)	0.3735 (7)	$0 \cdot 1136$ (4)	40 (3)
$\mathrm{O}(4)$	-0.0268 (8)	0.3490 (6)	$0 \cdot 1020$ (3)	65 (3)
C(5)	0.3842 (10)	0.3681 (7)	$0 \cdot 2063$ (4)	52 (3)
O(5)	0.3882 (8)	0.3651 (6)	0.2398 (4)	82 (3)
C(6)	0.5112 (11)	0.3604 (8)	0.1637 (4)	51 (4)
$\mathrm{O}(6)$	$0 \cdot 5947$ (9)	0.3552 (7)	0.1693 (4)	80 (3)
C(7)	0.3535 (9)	0.2606 (7)	0.1475 (4)	43 (3)
$\mathrm{O}(7)$	$0 \cdot 3868$ (8)	$0 \cdot 2064$ (6)	0.1637 (3)	71 (3)
C(8)	0.5149 (11)	0.4323 (9)	0.0874 (4)	59 (4)
$\mathrm{O}(8)$	0.5882 (9)	0.4656 (7)	0.0920 (3)	82 (3)
C(9)	0.3955 (10)	$0 \cdot 3884$ (7)	0.0227 (4)	47 (3)
O(9)	0.4021 (9)	0.3913 (7)	-0.0094 (4)	84 (3)
C(10)	0.4576 (10)	0.2895 (8)	0.0790 (4)	48 (3)
O(10)	0.4983 (8)	0.2335 (6)	0.0818 (3)	75 (3)
C(11)	0.0738 (10)	0.4608 (7)	0.0477 (4)	46 (3)
$\mathrm{O}(11)$	-0.0014 (8)	0.4892 (6)	0.0432 (3)	71 (3)
C(12)	0.2181 (9)	0.4722 (7)	0.0105 (4)	46 (3)
O(12)	0.2314 (8)	$0 \cdot 5068$ (6)	-0.0155 (3)	67 (3)
C(13)	$0 \cdot 1485$ (10)	0.3290 (8)	0.0281 (4)	51 (3)
$\mathrm{O}(13)$	0.1129 (9)	0.2830 (6)	0.0075 (3)	79 (3)
C(14)	0.2810 (10)	0.2036 (7)	0.0719 (4)	50 (3)
O(14)	0.2991 (8)	0.1503 (6)	0.0560 (3)	78 (3)
C(15)	0.1614 (10)	0.2318 (8)	$0 \cdot 1149$ (4)	52 (3)
O(15)	$0 \cdot 1032$ (9)	$0 \cdot 1942$ (7)	$0 \cdot 1248$ (4)	91 (4)
C(16)	0.2861 (7)	0.3992 (5)	$0.1048^{\circ}(3)$	22 (2)
C(17)	$0 \cdot 1152$ (8)	0.5969 (6)	$0 \div 1239$ (3)	29 (2)
C(21)	$0 \cdot 2954$ (6)	$0 \cdot 6788$ (4)	0.1545 (2)	37 (3)
C(22)	$0 \cdot 3945$ (6)	0.6908 (4)	0.1586 (2)	56 (4)
C(23)	0.4415 (6)	0.7376 (4)	$0 \cdot 1873$ (2)	72 (5)
C(24)	0.3894 (6)	0.7724 (4)	0.2118 (2)	63 (4)
C(25)	0.2904 (6)	0.7604 (4)	0.2076 (2)	55 (3)
C(26)	$0 \cdot 2433$ (6)	0.7136 (4)	0.1790 (2)	46 (3)
C(31)	$0 \cdot 2096$ (6)	0.6803 (4)	0.0756 (2)	40 (3)
C(32)	$0 \cdot 2278$ (6)	0.7558 (4)	0.0798 (2)	57 (4)
C(33)	0.1969 (6)	0.8034 (4)	0.0491 (2)	73 (5)
C(34)	$0 \cdot 1480$ (6)	0.7756 (4)	0.0143 (2)	78 (5)
C(35)	$0 \cdot 1298$ (6)	0.7001 (4)	0.0101 (2)	75 (5)
C(36)	$0 \cdot 1606$ (6)	$0 \cdot 6525$ (4)	0.0408 (2)	50 (4)
C(41)	0.1631 (6)	0.5503 (4)	0.2019 (2)	32 (3)
C(42)	0.2585 (6)	0.5337 (4)	0.2182 (2)	50 (4)
C(43)	0.3011 (6)	0.5655 (4)	0.2530 (2)	68 (4)
C(44)	$0 \cdot 2483$ (6)	$0 \cdot 6140$ (4)	0.2714 (2)	70 (5)
C(45)	$0 \cdot 1529$ (6)	0.6306 (4)	0.2550 (2)	71 (4)
C(46)	0.1103 (6)	$0 \cdot 5988$ (4)	0.2203 (2)	49 (3)
C(51)	-0.0159 (5)	$0 \cdot 5070$ (5)	$0 \cdot 1560$ (2)	35 (3)
C(52)	-0.0872 (5)	0.5296 (5)	$0 \cdot 1255$ (2)	54 (4)
C(53)	-0.1842 (5)	0.5164 (5)	$0 \cdot 1261$ (2)	69 (4)
C(54)	-0.2100 (5)	$0 \cdot 4808$ (5)	0.1574 (2)	67 (4)
C(55)	-0.1388 (5)	0.4582 (5)	0.1879 (2)	70 (4)
C(56)	-0.0417 (5)	0.4714 (5)	0.1872 (2)	54 (4)

Table 2. Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ with e.s.d.'s in parentheses

$\mathrm{Ru}(1)-\mathrm{Ru}(2)$	2.986 (1)	$\mathrm{Ru}(2)-\mathrm{Ru}(6)$	2.870 (1)
$\mathrm{Ru}(1)-\mathrm{Ru}(3)$	2.975 (1)	$\mathrm{Ru}(3)-\mathrm{Ru}(4)$	2.857 (1)
$\mathrm{Ru}(1)-\mathrm{Ru}(4)$	2.875 (1)	$\mathrm{Ru}(3)-\mathrm{Ru}(6)$	2.838 (1)
$\mathrm{Ru}(1)-\mathrm{Ru}(5)$	2.897 (1)	$\mathrm{Ru}(4)-\mathrm{Ru}(5)$	2.903 (1)
$\mathrm{Ru}(2)-\mathrm{Ru}(3)$	2.936 (1)	$\mathrm{Ru}(4)-\mathrm{Ru}(6)$	2.898 (1)
$\mathrm{Ru}(2)-\mathrm{Ru}(5)$	2.900 (1)	$\mathrm{Ru}(5)-\mathrm{Ru}(6)$	2.938 (1)
$\mathrm{Ru}(1)-\mathbf{P}(1)$	2.345 (3)	$\mathrm{Ru}(2)-\mathrm{P}(2)$	$2 \cdot 328$ (3)
$\mathrm{Ru}(1)-\mathrm{C}(16)$	2.04 (1)	$\mathrm{P}(1)-\mathrm{C}(17)$	1.843 (11)
$\mathrm{Ru}(2)-\mathrm{C}(16)$	2.02 (1)	$\mathrm{P}(1)-\mathrm{C}(21)$	1.822 (7)
$\mathrm{Ru}(3)-\mathrm{C}(16)$	2.05 (1)	$\mathrm{P}(1)-\mathrm{C}(31)$	1.840 (7)
$\mathrm{Ru}(4)-\mathrm{C}(16)$	2.07 (1)	$\mathrm{P}(2)-\mathrm{C}(17)$	1.822 (11)
$\mathrm{Ru}(5)-\mathrm{C}(16)$	2.06 (1)	$\mathrm{P}(2)-\mathrm{C}(41)$	1.819 (7)
$\mathrm{Ru}(6)-\mathrm{C}(16)$	2.09 (1)	$\mathrm{P}(2)-\mathrm{C}(51)$	1.825 (7)
Terminal CO's			
$\mathrm{Ru}-\mathrm{C}$ (min.)	1.83 (1)	$\mathrm{C}-\mathrm{O}$ (min.)	$1 \cdot 16$ (2)
$\mathrm{Ru}-\mathrm{C}$ (max.)	1.93 (1)	$\mathrm{C}-\mathrm{O}$ (max.)	$1 \cdot 19$ (2)
$\mathrm{Ru}-\mathrm{C}$ (mean)	1.86 (3)	$\mathrm{C}-\mathrm{O}$ (mean)	$1 \cdot 17$ (2)
Bridging CO			
$\mathrm{Ru}(3)-\mathrm{C}(7)$	2.05 (1)	C (7)-O(7)	$1 \cdot 19$ (2)
$\mathrm{Ru}(6)-\mathrm{C}(7)$	2.06 (1)		
$\mathrm{Ru}-\mathrm{Ru}-\mathrm{Ru}$ on triangular faces (24) min. 58.4 (1)			
max. 62.5 (1)			
$\mathrm{Ru}-\mathrm{Ru}-\mathrm{Ru}$ on square sections (12) min. 88.6 (1)			
max. 91.4 (1)			
$\mathrm{Ru}(2)-\mathrm{Ru}(1)-\mathrm{P}(1)$	94.4 (1)	$\mathrm{Ru}(1)-\mathrm{Ru}(2)-\mathrm{P}(2)$	85.6 (1)
$\mathrm{Ru}(1)-\mathrm{P}(1)-\mathrm{C}(17)$	111.2 (4)	$\mathrm{Ru}(2)-\mathrm{P}(2)-\mathrm{C}(17)$	114.3 (4)
$\mathrm{Ru}(1)-\mathrm{P}(1)-\mathrm{C}(21)$	116.1 (3)	$\mathrm{Ru}(2)-\mathrm{P}(2)-\mathrm{C}(41)$	119.1 (3)
$\mathrm{Ru}(1)-\mathrm{P}(1)-\mathrm{C}(31)$	118.5 (3)	$\mathrm{Ru}(2)-\mathrm{P}(2)-\mathrm{C}(51)$	111.9 (3)
$\mathrm{P}(1)-\mathrm{C}(17)-\mathrm{P}(2)$	112.1 (6)	$\mathrm{Ru}(3)-\mathrm{C}(7)-\mathrm{O}(7)$	135.1(11)
$\mathrm{Ru}(3)-\mathrm{C}(7)-\mathrm{Ru}(6)$) 87.3 (5)	$\mathrm{Ru}(6)-\mathrm{C}(7)-\mathrm{O}(7)$	137.5 (11)

Terminal CO's
$\mathrm{Ru}-\mathrm{C}-\mathrm{O}$ (min.) 168 (1)
$\mathrm{Ru}-\mathrm{C}-\mathrm{O}$ (max.) 179 (1)
$\mathrm{Ru}-\mathrm{C}-\mathrm{O}$ (mean) 176 (3)
an empirical ψ-scan absorption correction was applied. (Transmission: max. 99.8, min. 80.4\%.) Systematic absences: $h k l, h+k \neq 2 n ; h 0 l, l \neq 2 n$. After data reduction 7885 unique reflections, $R_{\text {int }}=0.009$, of which 5262 with $F>6 \sigma(F)$ were used in the structure determination. The normalized structure factors (E 's) suggested a centrosymmetric space group and $C 2 / c$ (No. 15) was used in the analysis and refinement. The Ru atoms were located using MULTAN80 (Main, Fiske, Hull, Lessinger, Germain, Declercq \& Woolfson, 1980) and repeated structure factor and electron density syntheses located the remaining non-H atoms. H atoms bonded to C were introduced in geometrically calculated positions $[d(\mathrm{C}-\mathrm{H})=1.08 \AA]$ with a common refined temperature factor, and the phenyl C atoms were treated as a rigid group $[d(\mathrm{C}-\mathrm{C})=$ $1 \cdot 395 \AA$]. The structure-factor listing showed a number with poor agreement and having a large value for l, and the worst of these (28) were omitted since it was thought they resulted from instrumental problems associated with the long c axis. Full-matrix leastsquares refinement minimizing $\sum w(\Delta F)^{2}$ converged to $R=0.052\{250$ parameters, 5234 reflections, anisotropic $(\mathrm{Ru}, \mathrm{P})$ and isotropic $(\mathrm{O}, \mathrm{C}, \mathrm{H})$ atoms, $w=1 /\left[\sigma^{2}(F)+0.0005 F^{2}\right]$, max. $\quad \Delta / \sigma=0 \cdot 6, \quad w R=$ $0.077\}$. The residual electron density was in the range 1.2 to $-1.0 \mathrm{e}^{-3}$. Scattering factors for neutral atoms and anomalous-dispersion corrections were taken from

SHELX76 (Sheldrick, 1976) and International Tables for X-ray Crystallography (1974) (Ru only). All calculations were carried out using SHELX76 (Sheldrick, 1976), MULTAN80 (Main et al., 1980), ORTEP (Johnson, 1965) and PLUTO (Motherwell \& Clegg, 1978) on ICL2970 or CDC7600 computers. The final positional parameters are given in Table 1 and pertinent bond lengths and angles in Table 2.*

Discussion. The molecular structure of the title compound contains an octahedron of Ru atoms with an interstitial carbide with a similar ligand arrangement to that reported for the parent cluster $\left[\mathrm{Ru}_{6} \mathrm{C}(\mathrm{CO})_{17}\right]$

[^1]

Fig. 1. Perspective view of the discrete molecule showing the atom-numbering scheme. Atoms are drawn with arbitrary size and H atoms are omitted for clarity.

Fig. 2. View of the molecule showing the stereochemical relationship between the phosphine and μ-carbonyl group. Atoms are drawn with 50% probability thermal ellipsoids and all phenyl C atoms and terminal CO groups are omitted for clarity.
(Sirigu, Bianchi \& Benedetti, 1969). As shown in Figs. 1 and 2, the phosphine acts as a bridging ligand spanning the $R u(1)-R u(2)$ edge. $R u(2)$ has the same regiochemical relationship with respect to the bridging CO ligand $[\mathrm{C}(7) \mathrm{O}(7)]$ as the first phosphine substitution site adopted in $\left[\mathrm{Ru}_{6} \mathrm{C}(\mathrm{CO})_{16}\left(\mathrm{PPh}_{2} \mathrm{Et}\right)\right]$ (Brown, Evans \& Webster, 1981), and the substitution site on $\mathrm{Ru}(2)$ is twisted away from the bridging CO side of the molecule to allow coordination of the second P atom to what appears to be the second-preference substitution site [on $\mathrm{Ru}(1)$]. Indeed, in both phosphineand arene-substituted derivatives, e.g. $\left[\mathrm{Ru}_{6} \mathrm{C}(\mathrm{CO})_{14^{-}}\right.$ $\left.\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2}\right]$ (Ansell \& Bradley, 1980) and $\left[\mathrm{Ru}_{6} \mathrm{C}(\mathrm{CO})_{11^{-}}\right.$ $\left.\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)_{2}\right]$ (Gomez-Sal, Johnson, Lewis, Raithby \& Wright, 1985), the non-carbonyl ligands avoid coordination to the Ru atoms involved in the μ-CO bridge. The P NMR data at 172 K , with two distinct ${ }^{31} \mathrm{P}$ environments, are consistent with this structure being maintained in solution.

The shortest $\mathrm{Ru}-\mathrm{Ru}$ distance is that bridged by the μ-CO group, whilst the longest $[\mathrm{Ru}(1)-\mathrm{Ru}(2)]$ is spanned by the $\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{PPh}_{2}$ ligand. However, the spread of metal-metal bond lengths in this compound $(0.15 \AA)$ is less than that of $\left[\mathrm{Ru}_{6} \mathrm{C}(\mathrm{CO})_{17}\right](0.20 \AA)$ and $\left[\mathrm{Ru}_{6} \mathrm{C}(\mathrm{CO})_{16}\left(\mathrm{PPh}_{2} \mathrm{Et}\right)\right] \quad(0.26 \AA)$, so there is little evidence for the phosphine destabilizing a metal-metal bond. The carbido site $[C(16)]$ is slightly displaced towards $\mathrm{Ru}(1)$ and $\mathrm{Ru}(2)$, but
the mean $\mathrm{Ru}-\mathrm{C}$ (carbide) distance is very similar to that of the parent cluster.

We thank Dr M. B. Hursthouse for collecting the data on the SERC/QMC diffractometer, and the SERC for support (BPG and AGJ).

References

Ansell, G. B. \& Bradley, J. S. (1980). Acta Cryst. B36, 1930-1932.
Brown, S. C., Evans, J. \& Webster, M. (1981). J. Chem. Soc. Dalton Trans. pp. 2263-2270.
Gomez-Sal, M. P., Johnson, B. F. G., Lewis, J., Raithby, P. R. \& Wright, A. H. (1985). J. Chem. Soc. Chem. Commun. pp. 1682-1684.
International Tables for X-ray Crystallography (1974). Vol IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USÁ.
Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Motherwell, W. D. S. \& Clegg, W. (1978). PLUTO. Program for plotting molecular and crystal structures. Univs. of Cambridge, England, and Göttingen, Federal Republic of Germany.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Sirigu, A., Bianchi, M. \& Benedetti, E. (1969) J. Chem. Soc. Chem. Commun. p. 596.

Structure of Tris $\left(\eta^{5}\right.$-cyclopentadienyl) ytterbium(III)*

By Stefan H. Eggers, Jürgen Kopf and R. Dieter Fischer
Institut für Anorganische und Angewandte Chemie, Universität Hamburg, Martin-Luther-King-Platz 6, D-2000 Hamburg 13, Federal Republic of Germany

(Received 12 May 1987; accepted 17 July 1987)

Abstract. $\left[\mathrm{Yb}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{3}\right], M_{r}=368.32$, orthorhombic, $P 22_{1} 1_{1}$, $\quad a=7.988$ (3), $\quad b=8.312$ (3), $\quad c=$ 18.176 (6) $\AA, \quad V=1206.8$ (7) $\AA^{3}, \quad Z=4, \quad D_{x}=$ $2.027 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda(\mathrm{Mo} \mathrm{K} \alpha)=0.709261 \AA, \quad \mu=$ $76.97 \mathrm{~cm}^{-1}, F(000)=700, T=295 \mathrm{~K}, R=0.037$ for 2244 unique observed reflections. The structure consists of Yb -centred, strictly mononuclear ($\eta^{5}-\mathrm{C}_{5}{ }^{-}$ $\left.\mathrm{H}_{5}\right)_{3} \mathrm{Yb}^{\text {III }}$ units and is not identical with the structures of the corresponding Tm and Lu complexes. The average $\mathrm{Yb}-\mathrm{C}$ distance is $2.639 \AA$, and the Yb atom lies only

[^2]0108-2701/87/122288-03\$01.50
$0.05 \AA$ above the plane spanned by the centres of the three C_{5} pentagons.

Introduction. In contrast to the series of strictly isomorphic tetrahydrofuran (THF) adducts ($\eta^{5}-\mathrm{C}_{5}{ }^{-}$ $\left.\mathrm{H}_{5}\right)_{3} M^{\mathrm{III}} \cdot \mathrm{THF}$, with $M=$ lanthanoid ($\mathrm{La}-\mathrm{Lu}$) and Y (Ni, Deng \& Qian, 1985) or U (Wasserman, Zozulin, Moody, Ryan \& Salazar, 1983), the parent base-free tris(cyclopentadienyl)lanthanoid(III) complexes, ($\mathrm{C}_{5}{ }^{-}$ $\left.\mathrm{H}_{5}\right)_{3} \mathrm{Ln}^{\text {III }}$, display substantial structural variations with Ln (Eggers, Hinrichs, Kopf, Jahn \& Fischer, 1986, and references therein). In view of the unexpectedly drastic structural changes experienced on going from (η^{5} $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)_{3} \mathrm{Tm}^{\mathrm{II} 1}$ to $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\left(\mu-\eta^{1}: \eta^{1}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Lu}^{1 \mathrm{III}}\right]_{\infty}$ (c) 1987 International Union of Crystallography

[^0]: * μ_{6}-Carbido- μ-carbonyl-tetradecacarbonyl- μ - $\left(P, P, P^{\prime}, P^{\prime}\right.$-tetra-phenyl)methylenebis(phosphine)]-octahedro-hexaruthenium.
 \dagger Author to whom correspondence should be addressed.

[^1]: * Lists of structure factors, anisotropic thermal parameters, calculated H -atom positions and complete geometric details have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 44250 (35 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

[^2]: * Coordination Behaviour in Base-Free Tris(cyclopentadienyl) Complexes of Rare Earth Elements. V. Part IV: Eggers, Hinrichs, Kopf, Jahn \& Fischer (1986).

